

Calculation Policy

This calculation policy has been created in line with the National Curriculum 2014, and uses materials from both White Rose and the NCETM, adapted for our school

There are examples and models for each operation with suggestions for when each approach for an operation could be introduced. This is not hard and fast. If a child is a rapid grasper and has deep and secure knowledge and understanding they can be moved on to models suggested for other year groups.

There are also examples for moving a concept from concrete to pictorial to abstract approaches. Children should be exposed to each of these stages, regardless of their year group, but the ultimate aim is to move to the abstract model as soon as children are ready - this will support children in being able to represent their thinking and understanding in different ways. Bear in mind that this rate of progress between models will be different for all children, some needing to have greater exposure to concrete and pictorial models before moving to the abstract. It is also vital that the abstract model be taught alongside the concrete and pictorial models, so that children can see the links between models.

Language

It is vital that our children learn to use the correct mathematical language and terminology, and that we as practitioners model this well to set the standard. A mastery lesson should be as rich in mathematical language and vocabulary as possible, so that children are steeped in this. The table below sets out a few basic things.

Preferred Terminology	Incorrect Terminology
Ones	Units
Is equal or equivalent to	The same as
zero	Oh (the letter O)
Exchange, exchanging, regrouping	Stealing, borrowing, popping next door to the neighbour for a pint of milk, etc...
Calculation, equation	Generic term of sum removed number sentence
Known, unknown	
Whole, part	

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole Model.	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in 8 a bar.	$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move into the abstract.
Counting on using numberlines, using cubes or using beadstrings.	Start with the greatest value on the bead string and then count on by the least value digit 1 by 1 to find the answer.	$12+5=17$ Start at the greatest value number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the greatest value number in your head and count on the least value number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the greatest value number and use the least value number to make 10. Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or partition the least value number using the part part whole model to make 10. $9+5=14$ 14 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5. - rekenreks		Emphasis should be on the language ' 1 more than 5 is equal to 6.' ' 2 more than 5 is $7 . '$ ' 8 is 3 more than 5.'

 Strategy	Concrete	Pictorial	Abstract							
Adding multiples of ten	$50=30=20$ Model using dienes and bead strings	$\begin{gathered} 3 \text { tons }+5 \operatorname{ten} s= \\ 30+60 \end{gathered}$ Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$							
Use known number facts Part part whole	Children explore ways of making numbers within 20. Use patterning to support.		$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$							
Using known facts	$\begin{aligned} & \square_{\square}+\square_{\square}=\square_{\square} \square_{\square} \square_{\square} \\ & \square \square \square \square \square \square \square \square \square \end{aligned}$	$\begin{aligned} \because+\because & =\therefore \\ \\|\\|+\\|\\| & =\\| \\| \\| \\ \square \square+\square \square & =\square \square \\ \square \square \square \square \square & \square \square \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$							
Bar model	$3+4=7$	$7+3 \text { = } 10$	23 25 $?$ $23+25=48$							

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to regroup Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	AR Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

Objective \& Strategy	Concrete	Pictorial	Abstract
Column additionno regrouping Add two or three 2 or 3digit numbers.	Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ 337 \end{array}$ Add the ones first, then the tens, then the hundreds. Start with the least significant digit
Column addition with regrouping.	Exchange ten ones for a ten. Model using numicon and pv counters.		$20+5$ $40+8$$60+13$Start by partitioning the numbers before formal column to show the exchange.$\frac{+836}{621}$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{Concrete} \& \multicolumn{3}{|r|}{Pictorial} \& Abstract

\hline Y4-add numbers with up to 4 digits \& \begin{tabular}{l}
Children c counters a ten and hundreds

Hundred

 \& inue to use dien add, exchanging tens for a hund a thousand. \& or pv ones for d and ten \& \multicolumn{3}{|l|}{

Draw representations using pv grid.

} \&

Continue from previous work to group hundreds as well as tens.

Relate to money and measures.
\end{tabular}

\hline | Y5—add numbers with more than 4 digits. |
| :--- |
| Add decimals with 2 decimal places, including money. | \& | As year 4 |
| :--- |
| Introduce and model | \& \& | hundredths |
| :--- |
| unters |
| . | \& \[

$$
\begin{aligned}
& 2.37 \\
& \text { tens } \\
& \hline \\
& 00000 \\
& 000
\end{aligned}
$$

\] \& | $+81.79$ |
| :--- |
| 00 | \& | tents | hundredids |
| :--- | :--- | :--- |
| 000 | 00009 |
| $0 \&$ | 00 |
| 0000 | 00060 |
| 00 | 0000 | \&

\hline | Y6-add several numbers of increasing complexity |
| :--- |
| Including adding money, measure and decimals with different numbers of decimal points. | \& As Y5 \& \& \& As Y5 \& \& \& | $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 10,579 \end{array}$ |
| :--- |
| Insert zeros for place holders. $\begin{array}{r} 23.361 \\ 9 \cdot 080 \\ 59.770 \\ +\quad 1 \cdot 300 \\ \hline 93 \cdot 511 \\ 21.21 \end{array}$ |

\hline
\end{tabular}

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	 Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Jim had 13 sweets and gave 4 to Sue. How many did he have left? Put 13 in your head, count back 4 . What number are you at?
Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister.?

 Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. 5 7
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10? How many left to take off?
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Reg up .ten into ten ones	Use a PV chart to show how to change a ten into ten ones. 1 whole ten is equal to 10 ones.		$20-4=16$
	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping. .	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make n st ategy Progressury d be crossing ten crossing more than one ten, cross- ing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

 Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	 47-32 Use base 10 or Numicon to model	Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones.	Children may draw base ten or PV counters and cross off.	

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw place value counters and show their exchange-see Y3	Take a 10 and make it into 10 ones.
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 28^{\circ} \times 10816 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for place- holders.
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Strategy \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities using manipultives including cubes and Numicon to demonstrate doubling \& \begin{tabular}{l}
Draw pictures to show how to double numbers

Double 4 is 8
\square
\square
\square

\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& | Count the groups as children are skip counting, children may use their fingers as they are skip counting. (s) |
| :--- |
| (9) | \& Children make representations to show counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$ |

\hline Making equal groups and counting the total \& Use manipulatives to create equal groups. \& | Draw to show $2 \times 3=6$ |
| :--- |
| Draw and make representations | \& $2 \times 4=8$

\hline
\end{tabular}

Objective \& Strategy	Concrete	Pictorial	Abstract
Repeated addition	$3+3+3$ Use different objects to add equal groups	Use pictorial including number lines to solve problemprere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5 , 3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \\ & \begin{array}{l} \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ \\ \\ \\ \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array} \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method	Show the links with arrays to first introduce the grid method. 4 rows of 10 4 rows of 3 Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each column, starting with the ones making any exchanges needed Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 \times \square=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each column, starting with the ones, making any exchanges needed.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method may be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	

Objective \& Strategy	Concrete	Pictorial	Abstract
Column Multiplication for 3 and 4 digits $\times 1$ digit.	It is im- portant at this stage you start with the least significant digit first and then line up correspond ing digits. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving	1 8 \times 1 3 5 4 1 8 0 2 3 4 18×3 on the first row ($8 \times 3=24$, carrying the 2 for 20 , then 1×3) 18×10 on the 2nd row. Show multiplying by 10 by putting zero in units first

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. 8 shared between 2 is 4 Sharing: 4 12 shared between 3 is 4	12 shared between 3 is 4

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Divisic nerouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping Think of the bar as a who 12.3 . Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

Objective \& Strategy	Concrete	Pictorial	Abstract
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over Example without $40 \div 5$ Ask "How many Example with rer $38 \div 6$ For larger number jumps can be rec	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. ((Use bar models to show division with remainders. remainder: ss in 40?" painder: s, when it becomes inefficient to count in single mu prded using known facts.	Complete written divisions and show the remainder using r. es remainder of 2 tiples, bigger

Objective \& Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division	 Use place value counters to divide using the bus stop method alongside Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.

1000s	100s	10s	1s
- ${ }^{-}$	∞	-10)	(1)(1)

We can't group 2 thousands into groups of 12 so will exchange them.

1000s	100s	10s	15
		-00	

We can group 24 hundreds into groups of 12 which leaves

After exchanging the hundred, we have 14 tens. We can group 12 tens

$$
1 2 \longdiv { 2 5 4 4 }
$$ into a group of 12 , which leaves 2 tens.

24
14
12
2

1000s	100s	10s	Is
		0000	

	0212
After exchanging the 2 tens, we 12	$1 2 \longdiv { 2 5 4 4 }$
have 24 ones. We can group 24 ones	24
into 2 group of 12 , which leaves no remainde	r. 14
	24
	0

Appendix 1:

Rekenreks were introduced into key stage 1 in academic year 2021-2022
'Mastering number' from the Maths Hub is a scheme followed to introduce children to the Rekenreks and the mathematical representations and calculations that are represented using this tool. Stem sentences from a key part of the language here.

Supporting documents:

Maths vocabulary progression
NCETM Progression documents

This policy was approved by the governing body of Summerlea Community Primary School in:
.....................October 2023.

Signature of Chair of Governors:

Signature of Headteacher:

Policy Review Form

Please complete this section when reviewing and updating this document.

Author	Name	Date
	Dave Burrows	September 2018
Reviews	Name	Review Period: Annually
	Dave Burrows	September 2019
	Dave Burrows	November 2020
	Lindsey Robins	February 2022
	Vicky Galpin	July 2022
Information Source	Name	Date
	NCETM Calculation Guidance	July 2022
Change Control	Sections Amended	Author \& Date
	Added to page 2 '- this will support children in being able to represent their thinking and understanding in different ways.'	November 2020
	Added to page 2 'removed number sentence'.	November 2020
	Addition of appendix 1	Lindsey Robins \& Vicky Galpin February 2022
	Addition of supporting documents	
	Year 1/2 addition - Language of smaller / larger number changes to greatest / least value digit / number	
	Year 5-6 Multiplication - change of language to 'start with least significant digit first' and 'line up corresponding digits'	
		Vicky Galpin
	Change of date on front cover	July 2022
		Vicky Galpin
	Change of date on front cover	October 2023

