

Calculation Policy 2023

Calculation Policy

This calculation policy has been created in line with the National Curriculum 2014, and uses materials from both White Rose and the NCETM, adapted for our school.

There are examples and models for each operation with suggestions for when each approach for an operation could be introduced. This is not hard and fast. If a child is a rapid grasper and has **deep** and **secure** knowledge and understanding they can be moved on to models suggested for other year groups.

There are also examples for moving a concept from concrete to pictorial to abstract approaches. Children should be exposed to **each of these stages, regardless of their year group**, but the ultimate aim is to move to the abstract model as soon as children are ready - this will support children in being able to represent their thinking and understanding in different ways. Bear in mind that this rate of progress between models will be different for all children, some needing to have greater exposure to concrete and pictorial models before moving to the abstract. It is also vital that the abstract model be taught alongside the concrete and pictorial models, so that children can see the links between models.

Language

It is vital that our children learn to use the correct mathematical language and terminology, and that we as practitioners model this well to set the standard. A mastery lesson should be as rich in mathematical language and vocabulary as possible, so that children are steeped in this. The table below sets out a few basic things.

Preferred Terminology	Incorrect Terminology
Ones	Units
Is equal or equivalent to	The same as
zero	Oh (the letter O)
Exchange, exchanging, regrouping	Stealing, borrowing, popping next door to the neighbour for a pint of milk, etc
Calculation, equation	Generic term of sum removed number sentence
Known, unknown	
Whole, part	

Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole Model.	Use part part whole model. Use cubes to add two numbers together as a group or in a bar. • Rekenreks	Use pictures to add two numbers together as a group or in a bar.	4 + 3 = 7 Use the part-part whole diagram as shown above to move into the abstract.
Counting on using numberlines, using cubes or using beadstrings.	Start with the greatest value on the bead string and then count on by the least value digit 1 by 1 to find the answer.	12 + 5 = 17 Start at the greatest value number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the greatest value number in your head and count on the least value number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	Start with the greatest value number and use the least value number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the least value number using the part part whole model to make 10. 9 + 5 = 14 1 4 1 4 1 4 1 4 1 4 1 4 1 4	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent & use number bonds and related subtraction facts within 20	2 more than 5. • rekenreks	Draw 2 more hats 5 + 2 =	Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'

YI ADDITION

Objective &	Concrete	Pictorial	Abstract
Strategy			
Adding multiples	50= 30 = 20		20 + 30 = 50
of ten	11111		70 = 50 + 20
		3 tens + 5 tens = tens 30 + 50 =	40 + □ = 60
	Model using dienes and bead strings	Use representations for base ten.	
Use known number facts	Children explore ways of making num-	20	1 + 1 = 16
Part part whole	bers within 20. Use patterning to support.	+ = 20 20 - = + = 20 20 - =	
Using known facts		∀ + ⊕ = .\$	3 + 4 = 7
		+ =	leads to
			30 + 40 = 70
	_	==-	leads to
		Children draw representations of H,T and O	300 + 400 = 700
Bar model		*****	23 25
		3333333 3 3 3	,
	3 + 4 = 7	7 + 3 = 10	23 + 25 = 48

Y2

ADDITION

Objective &	Concrete	Pictorial	Abstract
Strategy Add a two digit number and ones	17 + 5 = 22 Use ten frame to regroup Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model.	17 + 5 = 22 Explore related facts 17 + 5 = 22 5 + 17 = 22 22
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	27 + 30 +10 +10 +10 	27 + 10 = 37 27 + 20 = 47 27 + \(\sigma\) = 57
Add two 2-digit numbers	Model using dienes , place value counters and numicon	+20 +5 Or +20 +3 +2 47 67 72 47 67 70 72 Use number line and bridge ten using part whole if necessary.	25 + 47 20 + 5 40 + 7 20 + 40 = 60 5+ 7 = 12 60 + 12 = 72
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make/bridge ten then add on the third.

YS APPITION

Objective &		Concrete				Pict	torial		Abstract
Y4—add numbers with up to 4 digits	a ten and te	tinue to use dien add, exchanging t n tens for a hund r a thousand.			• •	**	••	**	
	Hundreds	Tens	Ones			••	•		
				Draw r	7 epresen	1 tations u	5 ensing pv g	1 grid.	Continue from previous work to group hundreds as well as tens. Relate to money and measures.
Y5—add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.		es tenths cimal place value	counters	tens	00	145	+ents	hundredtes 000000 00000	72.8 +54.6 127.4 1 1 € 2 3 · 5 9 + € 7 · 5 5 € 3 · 4
Y6—add several numbers of increasing complexity Including adding money, measure and decimals	As Y5			As Y5					81,059 3668 15,301 +20,551 120,579
with different numbers of decimal points.									Insert zeros for place holders. 2 3 · 3 6 9 · 0 8 0 5 9 · 7 7 0 + 1 · 3 0 0 9 3 · 5 1 2 1 · 2 1 2

4-6 ADDITION

Objective & Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$		7—4 = 3
	4-2=2	$15 - 3 = \boxed{12}$ Cross out drawn objects to show what has been taken away.	16—9 = 7
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	5 - 3 = 2 Count back in ones using a number line.	Jim had 13 sweets and gave 4 to Sue. How many did he have left? Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister' 5 Pencils Lay objects to represent bar model.	Count on using a number line to find the difference. -6 -1 -2 3 4 5 6 7 8 9 10 11 12	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?

Objective & Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. 5 7
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	13—7 13—7 = 6 3 4 5 1 2 3 4 5 6 7 8 6 6 7 1 12 (13) 14 15 16 17 18 19 20 Jump back 3 first, then another 4. Use ten as the stopping point.	16—8 How many do we take off first to get to 10? How many left to take off?
Bar model	5—2 = 3		8 2 10 = 8 + 2 10 = 2 + 8 10-2 = 8 10-8 = 2

Objective & Strategy	Concrete	Pictorial	Abstract
Regioup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones. 1 whole ten is equal to 10 ones.		20—4 = 16
Partitic Styrto sub- tract without re- grouping	Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off.	43—21 = 22
Make ten strategy Progression sure Id be crossing ten crossing more than one ten, crossing the hundreds.	34—28 Use a bead bar or bead strings to model counting to next ten and the rest.	76 80 90 93 'counting on' to find 'difference' Use a number line to count on to next ten and then the rest.	93—76 = 17

Objective &	Concrete	Pictorial	Abstract
Strategy			
Column subtraction without regrouping (friendly numbers)	47—32	Calculations 54 -22 32	$47 - 24 = 23$ $-\frac{40 + 7}{20 + 3}$
	Use base 10 or Numicon to model	Draw representations to support under- standing	Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Tens Units	45 -29 Tens 10 nes	836-254=582 Begin by partitioning into pv columns
	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 28 - 582 = 146 Then move to formal method. 5 8 2 1 4 6

Objective &	Concrete	Pictorial	Abstract
Strategy Subtracting tens and ones Year 4 subtract with	234 - 179 ©	Children to draw place value counters and show their exchange—see Y3	2 7 5 4
up to 4 digits. Introduce decimal subtraction through context of money	Model process of exchange using Numicon, base ten and then move to PV counters.		Take a 10 and make it into 10 ones.
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange—see Y3	28,928 Use zeros for place- holders.
Year 6—Subtract with increasingly large and more complex numbers and decimal values.			" " " " " " " " " " " " " " " " " " "

Objective &	Concrete	Pictorial	Abstract
Strategy			
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling + = = = = = = = = = = = = = = = = = =	Double 4 is 8	Partition a number and then double each part before recombining it back together. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30
Making equal groups and counting the total	x = 8 Use manipulatives to create equal groups.	Draw to show 2 x 3 = 6 Draw and make representations	2 x 4 = 8

Objective &	Concrete	Pictorial	Abstract
Strategy			
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problemare are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understanding	3 x 2 = 6 2 x 5 = 10

Pictorial	Abstract
raw pictures and representations to now how to double numbers	Partition a number and then double each part before recombining it back together.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
umber lines, counting sticks and bar odels should be used to show repre-	Count in multiples of a number aloud.
entation of counting in multiples.	Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15
+3 +3 +3 +3 +3 15 20 25 30 35	0, 5, 10, 15, 20, 25 , 30
3 3 3 3	4 × 3 =
?	

Strategy		
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representati show how to double numbers
	40 + 12 = 52	
Counting in multi-	Count the groups as children are skip	Number lines, counting sticks a
ples of 2, 3, 4, 5, 10	counting, children may use their fin-	models should be used to show
from 0	gers as they are skip counting. Use bar	sentation of counting in multip
(repeated addition)	models.	Sur our sur our our
	5+5+5+5+5+5+5+5=40	0 5 10 15 20 25
		13 +3 +3 +3 +3 15 20 25
		3 3 3

Concrete

Objective &

dels should be used to show repre ntation of counting in multiples. 3 3 3

Objective & Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative Using the Inverse This should be	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	12 = 3 × 4 12 = 4 × 3 Use an array to write multiplication sentences and reinforce repeated addition. 00000 00000 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 5 x 3 = 15 3 x 5 = 15 2 x 4 = 8 4 x 2 = 8
taught alongside division, so pupils learn how they work alongside each other.		\(\times \	$8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4$ $4 = 8 \div 2$ Show all 8 related fact family sentences.

Objective & Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits x 1 digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Calculations 4 x 126 Fill each row with 126 Add up each column, starting with the ones, making any exchanges needed.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid.
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. 321 x 2 = 642 Hundreds Tens Ones It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method may be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	327 x 4 28 80 1200 1308 This may lead to a compact method.

Objective &	Concrete	Pictorial	Abstract
Objective & Strategy Multiplying decimals up to 2 decimal places by a single digit.	Concrete	Pictorial	Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer. 3

Objective &	Concrete	Pictorial	Abstract
Strategy			
Division as sharing	4000	Children use pictures or shapes to share quantities.	12 shared between 3 is
		ab ab ab	4
	The state of the s	* * * * * * * * * * * * * * * * * * *	·
	EICHERMEN	*	
		8 shared between 2 is 4	
		Sharing:	
		4 4 4	
		12 shared between 3 is 4	
	10.		
	I have 10 cubes, can you share them equally in 2 groups?		

Y1

DIVISION

Objective &	Concrete	Pictorial	Abstract
Strategy			
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2 = 4$ Children use bar modelling to show and support understanding. 12 $12 \div 4 = 3$	12 ÷ 3 = 4
Divisic as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $ \begin{array}{cccccccccccccccccccccccccccccccccc$	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?

Objective &	Concrete	Pictorial	Abstract
Strategy			
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6 = 4$ 96 ÷ 3 = 32	Continue to use bar modelling to aid solving division problems. $ \begin{array}{c} 20 \\ ? \\ 20 \div 5 = ? \\ 5 \times ? = 20 \end{array} $	How many groups of 6 in 24? 24 ÷ 6 = 4
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences O O O O O O O O O O O O O O O O O O O	Find the inverse of multiplication and division sentences by creating eight linking number sentences. 7 x 4 = 28 4 x 7 = 28 28 ÷ 7 = 4 28 ÷ 4 = 7 28 = 7 x 4 28 = 4 x 7 4 = 28 ÷ 7 7 = 28 ÷ 4

Y3

DIVISION

Objective & Strategy	Concrete	Pictorial	Abstract
Division with remainders.	Divide objects between groups and see how much is left over Example without 40 + 5 Ask "How many Example with rer 38 + 6 For larger number jumps can be received.	5 s in 40?" 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 8 fin 0 5 10 15 20 25 30 35 40	ı remainder of 2

YS DIVISION

Objective &	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division	96 ÷ 3 Tens Units 3 2 Use place value counters to divide using the bus stop method alongside 2 ÷ 3= Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. 2 1 8 3 4 8 7 2 Move onto divisions with a remainder. 8 6 r 2 5 4 3 2 Finally move into decimal places to divide the total accurately. 1 4 6 16 21 3 5 5 1 1 . 0

Y4-6

DIVISION

Long Division

Long division using place value counters 2544 ÷ 12

1000s	100s	10s	1s
	00 0 0 0	00000	0000

We can't group 2 thousands into groups of 12 so will exchange them.

1000s	100s	10s	1s
			0000

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

	12 2544	12	
ns.	14 12		

0212

1000s	100s	10s	1s
	600 600 600 600 600 600 600 600 600 600		0000 0000 0000 0000 0000

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

12 2544

24

DIVISIO

Appen	dix 1:
-------	--------

Rekenreks were introduced into key stage 1 in academic year 2021 – 2022

'Mastering number' from the Maths Hub is a scheme followed to introduce children to the Rekenreks and the mathematical representations and calculations that are represented using this tool. Stem sentences from a key part of the language here.

Supporting documents:

Maths vocabulary progression NCETM Progression documents

Signature of Chair of Governors:

This policy was approved by the governing body of Summerlea Community Primary School in:

October 2023

Policy Review Form

Please complete this section when reviewing and updating this document.

Author	<i>Name</i> Dave Burrows	<i>Date</i> September 2018
Reviews Information Source	Name Dave Burrows Dave Burrows Lindsey Robins Vicky Galpin Name	Review Period: Annually September 2019 November 2020 February 2022 July 2022 Date
•	NCETM Calculation Guidance	July 2022
Change Control	Sections Amended Added to page 2 '- this will support children in being able to represent their thinking and understanding in different ways.'	Author & Date November 2020
	Added to page 2 'removed number sentence'.	November 2020
	Addition of appendix 1	Lindsey Robins & Vicky Galpin February 2022
	Addition of supporting documents	
	Year 1/2 addition - Language of smaller / larger number changes to greatest / least value digit / number	
	Year 5-6 Multiplication – change of language to 'start with least significant digit first' and 'line up corresponding digits'	
	Change of date on front cover	Vicky Galpin July 2022
	Change of date on front cover	Vicky Galpin October 2023